00001 /* LIBGUL - Geometry Utility Library
00002 * Copyright (C) 1998-1999 Norbert Irmer
00003 *
00004 * This library is free software; you can redistribute it and/or
00005 * modify it under the terms of the GNU Library General Public
00006 * License as published by the Free Software Foundation; either
00007 * version 2 of the License, or (at your option) any later version.
00008 *
00009 * This library is distributed in the hope that it will be useful,
00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
00012 * Library General Public License for more details.
00013 *
00014 * You should have received a copy of the GNU Library General Public
00015 * License along with this library; if not, write to the
00016 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
00017 * Boston, MA 02111-1307, USA.
00018 */
00019
00020 #ifndef GUNU_MBA_APPROXIMATE_H
00021 #define GUNU_MBA_APPROXIMATE_H
00022
00023 namespace gunu {
00024
00025 using gul::Ptr;
00026 using gul::point;
00027 using gul::point1;
00028 using gul::point2;
00029
00030 /*-------------------------------------------------------------------------*//**
00031 BSpline approximation,
00032 calculates the points of a control lattice 'delta', which approximates
00033 data points in 'P'. (P[].z contains the function value, P[].x and P[].y
00034 the location in the domain) */
00035 /*----------------------------------------------------------------------------*/
00036 template< class T >
00037 void BAapproximate(
00038 int nP, Ptr< point<T> >& P,
00039 int nu, int pu, Ptr<T>& U,
00040 int nv, int pv, Ptr<T>& V,
00041 Ptr< Ptr< point1<T> > >& delta );
00042 /*-------------------------------------------------------------------------*//**
00043 BSpline approximation,
00044 calculates the points of a control lattice 'delta', which approximates
00045 data points in 'P'. (P[].z contains the function value, P[].x and P[].y the
00046 location in the domain). An individual standard deviation for each data
00047 point must be given in 'Sigma' */
00048 /*----------------------------------------------------------------------------*/
00049 template< class T >
00050 void BAapproximate(
00051 int nP, Ptr< point<T> >& P, Ptr<T>& Sigma,
00052 int nu, int pu, Ptr<T>& U,
00053 int nv, int pv, Ptr<T>& V,
00054 Ptr< Ptr< point1<T> > >& delta );
00055
00056 /*-------------------------------------------------------------------------*//**
00057 Multilevel BSpline approximation,
00058 Calculates a NURBS surface (one-dimensional), which approximates
00059 data points in 'P', (P[].z contains the function value, P[].x and P[] the
00060 location in the domain). An individual standard deviation for each data
00061 point can be given in 'Sigma'.
00062 (Remarks: the data point array P is changed - after the algorithm the P[].z
00063 contain the difference between the function values of the calculated
00064 surface and and the original value!!!,
00065 Output arrays U,V,Psi must be reserved by the caller:
00066 U: 2*pu + 2^(nIter-1) + 1,
00067 V: 2*pv + 2^(nIter-1) + 1,
00068 Psi: (pv + 2^(nIter-1))*(pu + 2^(nIter-1)) */
00069 /*----------------------------------------------------------------------------*/
00070 template< class T >
00071 void MBAapproximate(
00072 int nP, Ptr< point<T> >& P, bool useSigma, Ptr<T>& Sigma, int nIter,
00073 int pu, int pv, Ptr<T>& U, Ptr<T>& V, Ptr< Ptr< point1<T> > >& Psi );
00074
00075 /*-------------------------------------------------------------------*//**
00076 executes the MBA algorithm and constructs a 3-dimensional surface
00077 from the results (x(),y() are identity mappings).
00078 when 'minimize' is set, the base rectangle in the xy-plane is
00079 chosen so that its area is minimal */
00080 /* ---------------------------------------------------------------------*/
00081 template< class T, class HP >
00082 GULAPI void SurfaceOverXYPlane(
00083 int nDatPoints, Ptr< point<T> >& datPoints,
00084 bool useStdDevs, Ptr<T>& StdDevs,
00085 bool minimize, int nIter,
00086 int pu, int pv,
00087 int *ret_nu, Ptr<T> *retU,
00088 int *ret_nv, Ptr<T> *retV,
00089 Ptr< Ptr<HP> > *retPw );
00090
00091 /*-------------------------------------------------------------------*//**
00092 creates a surface with the MBA algorithm. 'Dat' contains the 3d
00093 values and 'Dom' the locations in the parametric domain
00094 (output arrays are reserved automatically) */
00095 /* ---------------------------------------------------------------------*/
00096 template< class T >
00097 GULAPI void MBASurface( int nDat, Ptr< point<T> > Dat, Ptr< point2<T> > Dom,
00098 int nIter, int pu, int pv,
00099 int *ret_nu, Ptr<T> *retU,
00100 int *ret_nv, Ptr<T> *retV,
00101 Ptr< Ptr< point<T> > > *retP );
00102
00103
00104 }
00105
00106 #endif
00107
1.2.13.1 written by Dimitri van Heesch,
© 1997-2001