#include <gul_types.h>
Static Public Methods | |
| double | epsilon () | 
| double | epsilon_inv () | 
| double | zero_tol () | 
| size_t | mantissa_length () | 
| double | maximum () | 
| double | minimum () | 
| double | pi () | 
| double | pi_180 () | 
| double | pi_180_inv () | 
| double | root2_2 () | 
| double | root2_3 () | 
| double | golden_r () | 
| double | golden_c () | 
| double | tiny () | 
| double | giant () | 
| float | zero () | 
| float | one () | 
| void | InitBinCoeff (const int Pmax) | 
| void | ExitBinCoeff () | 
| double | BinCoeff (const int p, const int k) | 
| double | floor (const double a) | 
| double | ceil (const double a) | 
| double | fabs (const double a) | 
| double | sqrt (const double a) | 
| double | sin (const double a) | 
| double | cos (const double a) | 
| double | acos (const double a) | 
| int | ilogb (const double a) | 
| double | scalbn (const double x, int n) | 
| double | rad (const double d) | 
| double | deg (const double r) | 
| int | cmp (const double a, const double b) | 
| int | id () | 
Static Public Attributes | |
| double ** | m_BinCoeff = 0 | 
| int | m_BinCoeff_Pmax = -1 | 
      
  | 
  
| 
 
 Definition at line 276 of file gul_types.h. 
 00276 { return ::acos(a); }
 | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 264 of file gul_types.h. 
 00265   {  
00266     if( (k > p) || (k < 0) || (p < 0) ) return 0.0f;
00267     if( p > m_BinCoeff_Pmax ) InitBinCoeff( p ); 
00268     return m_BinCoeff[p][k];
00269   }  
 | 
  
      
  | 
  
| 
 
 Definition at line 271 of file gul_types.h. 
 00271 { return ::ceil(a); }
 | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 283 of file gul_types.h. 
 00283 {return compare<double>(a,b);}
 | 
  
      
  | 
  
| 
 
 Definition at line 275 of file gul_types.h. 
 00275 { return ::cos(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 282 of file gul_types.h. 
 00282 { return r * pi_180_inv(); }
 | 
  
      
  | 
  
| 
 
 Definition at line 235 of file gul_types.h. 
 00235 { return DBL_EPSILON; }
 | 
  
      
  | 
  
| 
 
 Definition at line 236 of file gul_types.h. 
 00236 { return 1.0/DBL_EPSILON; }
 | 
  
      
  | 
  
| 
 
 Definition at line 109 of file guar_bincoeff.cpp. 
 00110 {
00111   int i;
00112 
00113   if( m_BinCoeff == 0 )
00114     return;
00115 
00116   for( i = 0; i <= m_BinCoeff_Pmax; i++ )
00117     free( m_BinCoeff[i] ); 
00118 
00119   free( m_BinCoeff );
00120 
00121   m_BinCoeff = 0;
00122   m_BinCoeff_Pmax = -1;  
00123 }
 | 
  
      
  | 
  
| 
 
 Definition at line 272 of file gul_types.h. 
 00272 { return ::fabs(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 270 of file gul_types.h. 
 00270 { return ::floor(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 251 of file gul_types.h. 
 00251 { return 1.0f/tiny(); }
 | 
  
      
  | 
  
| 
 
 Definition at line 247 of file gul_types.h. 
 00247 { return 1.0-golden_r(); }
 | 
  
      
  | 
  
| 
 
 Definition at line 246 of file gul_types.h. 
 00246 { return 0.61803399; }
 | 
  
      
  | 
  
| 
 
 Definition at line 285 of file gul_types.h. 
 00285 { return(2); }
 | 
  
      
  | 
  
| 
 
 Definition at line 278 of file gul_types.h. 
 00278 { return ::ilogb(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 131 of file guar_bincoeff.cpp. 
 00132 {
00133   double s1,s2;
00134   int p,k;
00135 
00136   if( Pmax <= m_BinCoeff_Pmax )
00137     return;
00138   
00139   m_BinCoeff = (double **)realloc( m_BinCoeff, sizeof(double *) * (Pmax+1) );
00140   if( m_BinCoeff == NULL ) { throw AllocError(); }
00141 
00142   for( p = m_BinCoeff_Pmax+1; p <= Pmax; p++ ) 
00143   {
00144     m_BinCoeff[p] = (double *)malloc( sizeof(double) * (p+1) );
00145     if( m_BinCoeff[p] == 0 ) { throw AllocError(); }
00146 
00147     if( p == 0 )
00148     {
00149       m_BinCoeff[0][0] = 1;
00150       continue;
00151     }
00152 
00153     for( k = 0; k <= p; k++ )
00154     {
00155       if( k == 0 )
00156         s1 = 0;
00157       else
00158         s1 = m_BinCoeff[p-1][k-1];
00159 
00160       if( k > p-1 )
00161         s2 = 0;
00162       else
00163         s2 = m_BinCoeff[p-1][k];
00164     
00165       m_BinCoeff[p][k] = s1 + s2;  
00166     }      
00167   }
00168   m_BinCoeff_Pmax = Pmax;
00169 }
 | 
  
      
  | 
  
| 
 
 Definition at line 238 of file gul_types.h. 
 00238 { return 8; } // in multiples of 4
 | 
  
      
  | 
  
| 
 
 Definition at line 239 of file gul_types.h. 
 00239 { return DBL_MAX; }
 | 
  
      
  | 
  
| 
 
 Definition at line 240 of file gul_types.h. 
 00240 { return DBL_MIN; }
 | 
  
      
  | 
  
| 
 
 Definition at line 258 of file gul_types.h. 
 00258 { return 1.0; }
 | 
  
      
  | 
  
| 
 
 Definition at line 241 of file gul_types.h. 
 00241 { return 3.14159265358979323846; }
 | 
  
      
  | 
  
| 
 
 Definition at line 242 of file gul_types.h. 
 00242 { return 3.14159265358979323846/180.0; }
 | 
  
      
  | 
  
| 
 
 Definition at line 243 of file gul_types.h. 
 00243 { return 180.0/3.14159265358979323846; }
 | 
  
      
  | 
  
| 
 
 Definition at line 281 of file gul_types.h. 
 00281 { return d * pi_180(); }
 | 
  
      
  | 
  
| 
 
 Definition at line 244 of file gul_types.h. 
 00244 { return 1.41421356237309514547; }
 | 
  
      
  | 
  
| 
 
 Definition at line 245 of file gul_types.h. 
 00245 { return 1.7320508076887719318; }
 | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 279 of file gul_types.h. 
 00279 { return ::scalbn(x,n); } 
 | 
  
      
  | 
  
| 
 
 Definition at line 274 of file gul_types.h. 
 00274 { return ::sin(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 273 of file gul_types.h. 
 00273 { return ::sqrt(a); }
 | 
  
      
  | 
  
| 
 
 Definition at line 250 of file gul_types.h. 
 00250 { return 1e-40; }
 | 
  
      
  | 
  
| 
 
 Definition at line 257 of file gul_types.h. 
 00257 { return 0.0; }
 | 
  
      
  | 
  
| 
 
 Definition at line 237 of file gul_types.h. 
 00237 { return 1.0e-9; }
 | 
  
      
  | 
  
| 
 
 Definition at line 28 of file guar_bincoeff.cpp.  | 
  
      
  | 
  
| 
 
 Definition at line 29 of file guar_bincoeff.cpp.  | 
  
1.2.13.1 written by Dimitri van Heesch,
 © 1997-2001